top of page
Search
evenincastingma

Motion Design Element 3d Crack: A Review of the Features and Benefits of this Advanced 3D Software



To determine which constituent part of the 3D woven will experience cracking in the case of uniaxial tension, strain energy density components are calculated for the 3D AI woven composites unit cell when applying 1% strain along the weft direction. The finite element model is run using the COMSOL Multi-physics software package. Figure 4 shows that the transverse component eTT of the strain energy density is the highest when compared to the longitudinal eLL and shear eLT components. This implies that the strain energy release rate for the transverse component is the one that leads to matrix cracking in the weft yarn under this loading condition. In addition, having a constant energy release rate along the whole yarn length, it suggests that there is no preferable location within the yarn for the crack to start from. This also means that once a crack is initiated in the yarn, it grows instantaneously through the thickness and along the whole yarn length. The complete study of damage mechanisms is well explained and characterised in references [43,44].


Matrix cracking is a phenomenon that generates a motion which is essentially in plane. The motion of the crack faces is parallel to the plane of the specimen. It can thus be expected that matrix cracks will generate AE waves which contain a predominant extensional mode. Fibre fracture follows the same general behaviour and should therefore also be characterised by a large extensional mode [45].




Motion Design Element 3d Crack




The Fourier spectrum of the Figure 9 signals is shown in Figure 10. The frequency spectra for DWT levels 1 through 5 are centered at about 68 kHz, 120 kHz, 200 kHz, 340 kHz, and 650 kHz, respectively. At frequencies 68 kHz, 120 kHz, and 200 kHz (Morlet wavelet levels 1 and 2), three modes exist, the fundamental symmetric mode (S0), the fundamental anti-symmetric mode (A0), and the fundamental shear mode (SH0). However, with the PWAS receiver geometry and properties, the SH mode cannot be caught by these sensors [2]. Moreover, based on the tuning study, at 68 kHz the amplitude of the A0 mode is much higher than the S0 mode, and its travel speed is slower. At 120 kHz, the amplitude of A0 and S0 are almost the same, and at 200 kHz, the amplitude of the S0 is higher than the A0. To conclude, the component at low frequency (below 140 kHz) is dominated by the fundamental anti-symmetric mode A0. At 340 kHz (Morlet wavelet level 3), four modes are existent, S0, A0, A1 and S1; at 650 kHz (Morlet wavelet level 4), six modes are present, S0, S1, S2, A0, A1, and A2. Therefore, at these frequencies, the distinction of the different wave packets and the signal processing are very complex. Moreover, the amplitude is distributed such that it is the highest in level 1 and lowest in level 5 as shown in Figure 9. The FFT of the original signal shows that the amplitude of the signal is higher for the frequency lower than 160 kHz, which mean that the transverse crack develops more flexural (i.e., A0) than extensional (i.e., S0) motion. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page